如图,任意四边形ABCD,对角线AC、BD交于O点,过各顶点分别作对角线AC、BD的平行线,四条平行线围成一个四边形EFGH.试想当四边形ABCD的形状发生改变时,四边形EFGH的形状会有哪些变化?完成以下题目:当ABCD为任意四边形时,EFGH为________________;
当ABCD为矩形时,EFGH为________________;
当ABCD为菱形时,EFGH为________________;
当ABCD为正方形时,EFGH为________________;
当EFGH是矩形时,ABCD为________________;
当EFGH是菱形时,ABCD为________________;
当EFGH是正方形时,ABCD为________________.请选择(1)中任意一个你所写的结论进行证明.
反之,当用上述方法所围成的平行四边形
分别是矩形、菱形时,相应的原四边形
必须满足怎样的条件?
已知: .
求作: ,使得 .
作法:
①以 为圆心,任意长为半径画弧,分别交 , 于点 , ;
②画一条射线 ,以点 为圆心, 长为半径画弧,交 于点 ;
③以点 为圆心, 长为半径画弧,与第②步中所画的弧相交于点 ;
④过点 画射线 ,则 .
根据上面的作法,完成以下问题:
(1)使用直尺和圆规,作出 (请保留作图痕迹).
(2)完成下面证明 的过程(注 括号里填写推理的依据).
证明:由作法可知 , , ,
△
.
如图,在平面直角坐标系中,已知点 的坐标为 ,且 ,抛物线 图象经过 , , 三点.
(1)求 , 两点的坐标;
(2)求抛物线的解析式;
(3)若点 是直线 下方的抛物线上的一个动点,作 于点 ,当 的值最大时,求此时点 的坐标及 的最大值.
如图, 是 的直径,弦 与 相交于点 , 与 相切于点 ,交 的延长线于点 , , , .
(1)求 的度数;
(2)求 的长度.
如图,在矩形 中, , 分别是 , 边上的点,且 .
(1)求证: ;
(2)当 时,四边形 是菱形吗?请说明理由.
2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?