如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A.C时,请说明PQ∥BC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?
如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)在线段OB上,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.
(1)求抛物线的解析式;
(2)求点C的坐标(用含m的代数式表示);
(3)当四边形ABCD是平行四边形时,求点P的坐标.
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.
(1)若取AE的中点P,求证:;
(2)在图①中,若将△BEF绕点B顺时针方向旋转(
<
<
),如图②,是否存在某位置,使得AE∥BF,若存在,求出所有可能的旋转角
的大小;若不存在,请说明理由;
已知:如图所示,在Rt△ABC中,,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且
.判断直线BD与⊙O的位置关系,并证明你的结论.
如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.
(1)求S与x的函数关系式及x的取值范围.
(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?
如图,DE为半圆的直径,O为圆心,DE=10,延长DE到A,使得EA=1,直线AC与半圆交于B、C两点,且.求弦BC的长;