游客
题文

如果甲乙两个乒乓球选手进行比赛,而且他们在每一局中获胜的概率都是,规定使用“七局四胜制”,即先赢四局者胜.
(1)试分别求甲打完4局、5局才获胜的概率;
(2)设比赛局数为ξ,求ξ的分布列及期望.

科目 数学   题型 解答题   难度 较易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.

(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

如图,DE分别为△ABCABAC的中点,直线DE交△ABC的外接圆于FG两点,若CFAB,证明:

(1)CDBC
(2)△BCD∽△GBD.

如图,在正△ABC中,点DE分别在边BCAC上,且BDBCCECAADBE相交于点P,求证:

(1)PDCE四点共圆;
(2)APCP.

在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为.
(1)求圆C的极坐标方程;
(2)P是圆C上一动点,点Q满足3,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.

已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且ABCD依逆时针次序排列,点A的极坐标为
(1)求点ABCD的直角坐标;
(2)设PC1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号