对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为
(1≤a≤3).设用
单位质量的水初次清洗后的清洁度是
(
),用
质量的水第二次清洗后的清洁度是
,其中
是该物体初次清洗后的清洁度.
(Ⅰ)分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;
(Ⅱ)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论
取不同数值时对最少总用水量多少的影响.
(本小题满分12分)已知函数的图象与直线
的相邻两个交点之间的距离为
.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设的内角
所对的边分别是
.若
,求角
的大小.
(本小题满分14分)已知函数(
为自然对数的底数),曲线
在
处的切线与直线
互相垂直.
(Ⅰ)求实数的值;
(Ⅱ)若对任意,
恒成立,求实数
的取值范围;
(Ⅲ)设,
.问:是否存在正常数
,对任意给定的正整数
,都有
成立?若存在,求
的最小值;若不存在,请说明理由.
(本小题满分13分)如图,已知椭圆的离心率为
,其左、右顶点分别为
.一条不经过原点的直线
与该椭圆相交于
、
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,直线
与
的斜率分别为
.试问:是否存在实数
,使得
?若存在,求
的值;若不存在,请说明理由.
(本小题满分12分)已知等差数列单调递增,且
,
是
与
的等比中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前
项和为
,求数列
的前
项和
.
(本小题满分12分)如图,已知是圆
的两条互相垂直的直径,直角梯形
所在平面与圆
所在平面互相垂直,其中
,
,
,
,点
为线段
中点.
(Ⅰ)求证:直线平面
;
(Ⅱ)若点在线段
上,且点
在平面
上的射影为线段
的中点,请求出线段
的长.