游客
题文

如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD
(1)求证:∠CDE=2∠B
(2)若BD:AB=:2,求⊙O的半径及弦DF的长

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理 解直角三角形
登录免费查看答案和解析
相关试题

在数学课的学习中,我们已经接触了很多代数恒等式,知道可以用图形的面积来解释这些代数恒等式.如图①可以解释恒等式

(1)如图②可以解释恒等式=
(2)如图③是由4个长为,宽为的长方形纸片围成的正方形,
①用面积关系写出一个代数恒等式:
②若长方形纸片的面积为3,且长比宽长3,求长方形的周长(其中a.b都是正数,结果可保留根号).

(1)(分解因式);(2).

先化简,再求值:,其中

如图,点B、F、C、E在同一直线上,∠A=∠D,BF=CE,AC∥DF.求证:△ABC≌△DEF

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号