已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐
标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-
+
交折线O-A-B于点E.
(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;
(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;
(3)问题(2)中的四边形DMEN中,ME的长为____________.
如图1,若△ABC和△ADE为等腰直角三角形,AB=AC,AD=AE,M,N分别EB,CD的中点.
(1)易证:①CD="BE" ;②△AMN是三角形;
(2)当把△ADE绕A点旋转到图2的位置时,
①求证:CD=BE;
②判断△AMN的形状,并证明你的结论;
(3)当△ADE绕A点旋转到图3的位置时,(2)中的结论是否成立?直接写出即可,不要求证明;并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比.
如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC交于点E,且BE平分∠ABC,
(1)判断直线AC与⊙O的位置关系,并说明理由;
(2)若AD=2,AE=,求⊙O的面积.
“盐阜人民商场”某品牌衬衫平均每天可销售100件,每件盈利50元.“元旦”期间,商场决定采取适当的降价措施促销.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:
(1)降价后每件商品盈利元,商场日销售量增加件(用含x的代数式表示);
(2)在上述条件不变的情况下,求每件商品降价多少元时,该品牌衬衫日盈利可达到8000元?
一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,若篮球运行的轨迹为抛物线,篮圈中心距离地面3米.
(1)建立如图的平面直角坐标系,求抛物线的解析式;
(2)问此球能否投中?
如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于C,交弦AB于D.
(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹);
(2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.