先阅读下列材料,再解答后面的问题:
要求算式的值,我们可以按照如下方法进行:
设=S ① 则有2(
)= 2S
∴ = 2S ②
②-①得: = S ∴
= S
∴ 原式: =
㈠ 请你根据上述方法计算: = 。
㈡ 2008年美国的金融危机引发了波及全世界的经济危机,我国也在此次经济危机中深受影响,为此2009年我国积极理性的放宽信贷,帮助我国企业、特别是中小企业度过难关,尽最大努力减少我国的失业率。 某企业在应对此次危机时积极进取,决定贷款进行技术改造,现有两种方案, 甲方案: 一次性贷款10万元,第一年便可获利1万元,以后每年获利比前一年增加30%的利润;
乙方案: 每年贷款1万元,第一年可获利1万元,以后每年获利比前一年增加5千元;
两种方案的使用期都是10年,到期一次性归还本息. 若银行两种形式的贷款都按年息5%的复利计算,
试比较两种方案中,10年的总利润,哪种获利更多? ( 结果精确到0.01 )
(取1.0510 =" 1.629" , 1.310 =" 13.786" , 1.510 =" 57.665" )
( 注意:‘复利’的计算方法,例如:一次性贷款7万元,按年息5%的复利计算;⑴若1年后归还本息,则要还元。⑵若2年后归还本息,则要还
元。⑶若3年后归还本息,则要还
元。 )
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG
连结GD,求证△ADG≌△ABE;
如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=1,BC=2,E是线段BC上一动点(不含端点B,C ),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变,若∠FCN的大小不变,求tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).
(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含
的代数式表示).
(2) 初三(1)班至少有多少名同学?最多有多少名?
如图,在平面直角坐标系中,反比例函数的图象经过点A(1, 2),B(m ,n)(m>1),过点B作y轴的垂线,垂足为C.
(1)求该反比例函数解析式;
(2)当△ABC面积为2时,求点B的坐标
某班13位同学参加每周一次的卫生大扫除,按学校要求需要完成总面积为80m2的三项任务,它们的面积比例及每人每分钟完成各项目的工作量如下图所示:
(1)从上述统计图中可知:每人每分钟给擦课桌椅、擦玻璃、扫地拖地的面积分别
是 m2, m2, m2;
(2)如果x人每分钟擦玻璃的面积是ym2,那么y关于x的函数关系式是;
(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务
如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?