近期温州哄哄烈烈的展开了六城联创活动,抱着我为文明温州出一份力的想法,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:
A.顾客出面制止; | B.劝说进吸烟室; | C.餐厅老板出面制止; | D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题: |
图① 图②
(1)这次抽样的公众有__________人;
(2)请将统计图①补充完整;
(3)在统计图②中,“无所谓”部分所对应的圆心角是多少度?
(4)若温州全市人口有800万人,估计赞成“餐厅老板出面制止”的有多少万人?并根据统计信息,谈谈自己的感想.(不超过30个字)
(年湖南长沙10分)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和()两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).
(1)求a,b,c的值;
(2)求证:在点P运动的过程中,⊙P始终与x轴相交;
(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.
(年甘肃白银、定西、平凉、酒泉、临夏12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.
(1)求点M、A、B坐标;
(2)连结AB、AM、BM,求∠ABM的正切值;
(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.
(年四川南充8分)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,
(1)求证:直线EP为⊙O的切线;
(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;
(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.
(年山东莱芜10分)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).
(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;
(2)求EF•EC的值;
(3)如图2,当F是AB的四等分点时,求EC的值.
(2014年山东济南9分)如图1,有一组平行线∥
∥
∥
,正方形ABCD的四个顶点分别在
上,EG过点D且垂直于
于点E,分别交
于点F,G,
.
(1)AE= ,正方形ABCD的边长= ;
(2)如图2,将∠AEG绕点A顺时针旋转得到,旋转角为
,点
在直线
上,以
为边在的
左侧作菱形
,使点
分别在直线
上.
①写出与
的函数关系并给出证明;
②若,求菱形
的边长.