游客
题文

某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

科目 数学   题型 解答题   难度 中等
知识点: 二元一次不定方程的应用
登录免费查看答案和解析
相关试题

如图,在△ABC中,A(-2,3)、B(-3,1)、C(-1,2).

(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1
(2)画出△ABC关于x轴对称的△A2B2C2
(3)将△ABC绕着原点O旋转180°,画出旋转后的△A3B3C3
(4)△A1B1C1与△A3B3C3关于点 对称(填“轴对称”或“中心对称”).

如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.

如图,矩形ABCD中,AB=8,AD=10.

(1)求矩形ABCD的周长;
(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.
①求DE的长;
② 点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.
(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.

已知,在△ABC中,∠BAC=90°,AB=AC,CE平分∠ACB交AB于点E。
(1)∠B= 度.
(2)如图9,若点D在斜边BC上,DM垂直平分BE,垂足为M。求证:BD=AE;
(3)如图10,过点B作BF⊥CE,交CE的延长线与点F。若CE=6,求△BEC的面积。

点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,它们的速度都是1cm/s。

(1)经过1秒时,连接AQ、CP交于点M,则在P、Q运动的过程中,求证:,并求出∠CMQ的度数;
(2)经过几秒时,△PBQ是直角三角形?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号