已知二次函数的图象经过点(-2,4),(-1,0),(0,-2)
(1)求这个二次函数的表达式
(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象
(3)若0<y<3,求x的取值范围
如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,.
(1)求证:AD=AE;
(2)如图2,点P在BE上,作EF⊥DP于点F,连结AF. 求证:;
(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.
如图,已知一次函数的图象与
轴、
轴分别交于A、B两点且与反比例函数
的图象在第一象限交于C点,CD⊥
轴于D点,若∠C A D=
,A B =
,C D =
(1)求点A、B、D的坐标
(2)求一次函数的解析式
(3)反比例函数的解析式
(4)求△BCD的面积
如图8-1、9-1,现将二张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合.分别在图8-1、图9-1中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,按所采裁图形的实际大小,在图8-2中拼成正方形,在图9-2中拼成一个角是135° 的三角形.
要求:
(1)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;
(2)所拼出的几何图形的各顶点必须与小正方形的顶点重合.
某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前、后每小时分别加工多少个零件?
已知:如图,四边形ABCD中,E、F、G、H分别是AB、 BC、CD、DA的中点。求证:四边形EFGH是平行四边形(本题6分)