学校为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和
,且各株大树是否成活互不影响.
(Ⅰ)求移栽的4株大树中恰有3株成活的概率;
(Ⅱ)设移栽的4株大树中成活的株数为,求
分布列与期望.
设函数
.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,不等式
恒成立,求实数
的取值范围;
(Ⅲ)关于的方程
在
上恰有两个相异实根,求
的取值范围.
将圆上的点的横坐标保持不变,纵坐标变为原来的
倍,得到曲线
.设直线
与曲线
相交于
、
两点,且
,其中
是曲线
与
轴正半轴的交点.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:直线
的纵截距为定值.
如图,已知正方形和矩形
所在的平面互相垂直,
,
,
是线段
的中点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证://平面
;
(Ⅲ)求异面直线与
所成的角.
同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体),
两颗骰子向上的点数之和记为.
(Ⅰ)求的概率
;
(Ⅱ)求的概率
.
已知,
,
(Ⅰ)若,求
的解集;(Ⅱ)求
的周期及增区间.