游客
题文

随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
(1)求的分布列;
(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.

(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E—PC—A的正弦值.

甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。

在△ABC中,内角A,B,C所对边长分别为.
(1)求的最大值及的取值范围;
(2)求函数的最值.

(本小题满分14分)
已知
(Ⅰ)求
(Ⅱ)判断并证明的奇偶性与单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围。

(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,的函数关系式为为常数),如图所示,根据图中提供的信息,回答下列问题:

(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号