游客
题文

随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
(1)求的分布列;
(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分13分)为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙和丙三支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)求决赛中甲、乙两支队伍出场顺序相邻的概率.

(本小题满分13分)在中,角所对的边分别为.
(Ⅰ)求的值;
(Ⅱ)若,求边的长.

(本小题满分14分)
已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.
(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;

.
(Ⅱ)若集合是集合的一个元基底,证明:
(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.

(本小题满分14分)
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知过点的直线与椭圆交于两点.
(ⅰ)若直线垂直于轴,求大小;
(ⅱ)若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

(本小题满分13分)
已知函数,其中是常数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号