游客
题文

(本小题满分16分)
已知数列{an}的前n项和为Sn,且Sn=2an-2n+1,nÎN*.
(1)求数列{an}的通项公式;
(2)设bn= log2,Tn=+++…+,是否存在最大的正整数k,使得对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 数列综合
登录免费查看答案和解析
相关试题

已知函数,且
(Ⅰ)若,求的值;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)求函数的单调递增区间.

如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,的交点为O.
(Ⅰ)求证:平面
(Ⅱ)已知为侧棱上一个动点. 试问对于上任意一点,平面与平面是否垂直?若垂直,请加以证明;若不垂直,请说明理由.

(本题满分13分)
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:

环数
7
8
9
10
命中次数
2
7
8
3


(Ⅰ)求此运动员射击的环数的平均数;
(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(mn).
求“”的概率.

设函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)当时,求函数的最大值及取得最大值时的的值.

已知椭圆经过点,过右焦点F且不与x轴重合的动直线L交椭圆于两点,当动直线L的斜率为2时,坐标原点O到L的距离为
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过F的另一直线交椭圆于两点,且,当四边形的面积S=时,求直线L的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号