游客
题文

已知:抛物线(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于AB两点(AB的左边).

(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OPxMQ1,求y1x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQBPB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图(1)所示;种植花卉的利润与投资量成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)

(1)分别求出利润关于投资量的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

如图,⊙O与的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知,⊙O的半径为12,弧DE的长度为

(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.

完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次.把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,
(1)若第一次摸出球后放回摇匀,求点(m,n)不在第二象限的概率.(用列表法求解)
(2)若第一次摸出球后不放回,求点(m,n)不在第二象限的概率.(用树状图求解)

在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C =90°,AC=3,BC=4.

(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1
(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.

如图,已知抛物线经过点,交轴于点.

(1)求此抛物线的解析式;
(2)抛物线第一象限上有一动点,过点轴,垂足为,请求出的最大值,及此时点坐标;
(3)抛物线顶点为轴于点,一块三角板直角顶点在线段上滑动,且一直角边过点,另一直角边与轴交于,请求出实数的变化范围,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号