游客
题文

【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.
【初步体验】
(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=     
=         
(2)如图2,在△ABC 中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.
【深入探究】
上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:
(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

阅读下面问题:


.
试求:(1)的值;
(2)为正整数)的值.
(3)的值.

若实数满足条件,求的值.

大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?
事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.
请解答:已知:5+的小数部分是, 5-的整数部分是b,求+b的值.

已知的算术平方根,的立方根,求的平方根.

先阅读下面的解题过程,然后再解答:
形如的化简,只要我们找到两个数,使,即,那么便有:
.
例如:化简:.
解:首先把化为,这里
由于

所以.
根据上述方法化简:.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号