西湖龙井茶名扬中外.小叶是某龙井茶叶有限公司产品包装部门的设计师.
如图1是用矩形厚纸片(厚度不计)做长方体茶叶包装盒的示意图,阴影部分是裁剪掉的部分.沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“接口”用来折叠后粘贴或封盖.
(1)小叶用长40cm,宽34cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?
(2)如图2是小叶设计出的一款茶叶包装,它的里面是由四个圆柱体茶叶罐包装而成的龙井茶.现有一张60cm×44cm的矩形厚纸片,按如图3所示的方法设计包装盒,用来包装四个圆柱体茶叶罐,已知该种的茶叶罐高是底面直径1.5倍,要求包装盒“接口”的宽度为2cm(如有多余可裁剪),问这样的茶叶罐底面直径最大可以为多少?
图1 图2 图3
先化简,再求值:,其中
,
.
已知:如图,在ΔABC中,AB=AC=10cm,BC=12cm,AD⊥BC于D.直线PM从点C出发沿CB方向匀速运动,速度为1 cm/s;运动过程中始终保持PM⊥BC,直线PM交BC于P,交AC于M ;过点P作PQ⊥AB,交AB于Q,交AD于N ,连接QM.设运动时间是t(s)(0<t <6),解答下列问题:
(1)当t为何值时,QM∥BC?
(2)设四边形ANPM的面积为y(cm2),试求出y与t的函数关系式;
(3)是否存在某一时刻t,使y的值最大?若存在,求出t的值;若不存在,请说明理由;
(4)是否存在某一时刻t,使点M在线段PQ的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
发现问题:
如图(1),在ΔABC中,∠A=2∠B,且∠A=60°.
我们可以进行以下计算:
由题意可知:∠B=30°,∠C=90°,
可得到:c=2b,a=b,
所以a2-b2=(b)2-b2=2b2=b·c.
即a2-b2= bc.
提出猜想:
对于任意的ΔABC,当∠A=2∠B时,关系式a2-b2=bc都成立.
验证猜想:
(1)(验证特殊三角形)如图(2),请你参照上述研究方法,对等腰直角三角形进行验证,判断猜想是否正确,并写出验证过程;
已知:ΔABC中,∠A=2∠B,∠A=90°求证:a2-b2=bc.
(2)(验证一般三角形)如图(3),
已知:ΔABC中,∠A=2∠B,求证:a2-b2= bc.
结论应用:
若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.
某产品每件成本10元 ,试销阶段每件产品的销售单价(元 ∕ 件)与日销售量
(件)之间的关系如下表.
![]() |
15 |
18 |
20 |
22 |
… |
![]() |
250 |
220 |
200 |
180 |
… |
(1)试判断与
之间的函数关系,并求出函数关系式;
(2)求日销售利润w(元)与销售单价(元 ∕ 件)之间的函数关系式;
(3)若规定销售单价不低于15元,且日销售量不少于120件,那么销售单价应定为多少时,每天获得的利润最大?最大利润是多少?
已知:如图,平行四边形 ABCD的两条对角线相交于点O, E是BO的中点.过B点作AC的平行线,交CE的延长线于点F,连接BF.
(1)求证:FB=AO;
(2)当平行四边形 ABCD满足什么条件时,四边形AFBO是菱形?说明理由.