如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:
(1)分别写出点A、B两点的坐标;
(2)作出△ABC关于坐标原点成中心对称的△A1B1C1;
(3)作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A1B1C1的内部,请直接写出x的取值范围.
青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(,结果精确到个位)
如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
|
已知圆锥的底面直径是8,母线长是16,求它的侧面展开图的圆心角与圆锥的全面积。
如图所示,在平面直角坐标系中,顶点为(,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧), 已知
点坐标为(
,
).
(1)求此抛物线的解析式;
(2)过点作线段
的垂线交抛物线于点
,
如果以点为圆心的圆与直线
相切,请判断抛物
线的对称轴与⊙
有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
,
两点之间,问:当点
运动到什么位置时,
的
面积最大?并求出此时点的坐标和
的最大面积.
如图所示,⊙的直径
,
和
是它的两条切线,
为射线
上的动点(不与
重合),
切⊙
于
,交
于
,设
.
(1)求与
的函数关系式;
(2)若⊙与⊙
外切,且⊙
分别与
相切于点,求
为何值时⊙
半径为1.