已知直线C1:,(t为参数),圆C2: (θ为参数).(I)当α=时,求C1与C2的交点的直角坐标;(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
设数列的前项和为. (1); (2).
已知向量满足,且. (1)、求向量的坐标;(2)、求向量与的夹角.
已知圆的方程为且与圆相切. (1)求直线的方程; (2)设圆与轴交于两点,M是圆上异于的任意一点,过点且与轴垂直的直线为,直线交直线于点P’,直线交直线于点Q’ 求证:以P’Q’为直径的圆总过定点,并求出定点坐标.
已知函数在上是增函数,若不等式对于任意恒成立,求实数的取值范围。
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为. (1)求直线与圆相切的概率; (2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号