已知,正方形ABCD中,∠MAN=45°, ∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数
量关系: ;
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由.如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:
已接种 |
未接种 |
合计 |
|
七年级 |
30 |
10 |
40 |
八年级 |
35 |
15 |
|
九年级 |
40 |
|
60 |
合计 |
105 |
|
150 |
(1)表中, , , ;
(2)由表中数据可知,统计的教师中接种率最高的是 年级教师;(填“七”或“八”或“九”
(3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有 人;
(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.
如图,在菱形 中, , 是对角线 上的两点,且 .
(1)求证: ;
(2)证明四边形 是菱形.
先化简,再求值: ,其中 .
已知抛物线 与 轴交于点 和 ,与 轴交于点 ,顶点为 ,点 在抛物线对称轴上且位于 轴下方,连 交抛物线于 ,连 、 .
(1)求抛物线的解析式;
(2)如图1,当 时,求 点的横坐标;
(3)如图2,过点 作 轴的平行线 ,过 作 于 ,若 ,求 点的坐标.
已知等边三角形 ,过 点作 的垂线 ,点 为 上一动点(不与点 重合),连接 ,把线段 绕点 逆时针方向旋转 得到 ,连 .
(1)如图1,直接写出线段 与 的数量关系;
(2)如图2,当点 、 在 同侧且 时,求证:直线 垂直平分线段 ;
(3)如图3,若等边三角形 的边长为4,点 、 分别位于直线 异侧,且 的面积等于 ,求线段 的长度.