椭圆M的中心在坐标原点D,左、右焦点F1,F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,).
(I)求椭圆M与抛物线N的方程;
(Ⅱ)在抛物线N位于椭圆内(不含边界)的一段曲线上,是否存在点B,使得△AF1B的外接圆圆心在x轴上?若存在,求出B点坐标;若不存在,请说明理由.
求直线L:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦长AB的长。
(本小题满分14分)
(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=
;
(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论
(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+
=1(a>b>0)提出一个有深度的结论,并证明之.
(本小题满分13分)等差数列{an}中,公差d≠0,已知数列是等比数列,其中k1=1,k2=7,k3=25.
(1)求数列{kn}的通项;
(2)若a1=9,设bn= +
,Sn=b12+b22+b32+…+ bn2, Tn=
+
+
+…+
,试判断数列{Sn+Tn}前100项中有多少项是能被4整除的整数。
(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函数f(x)的单调区间;
(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0= 时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由
(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD ="2AE" ="2AB" =" 4AF=" 4,将四边形EFCD沿EF折起使AE=AD.
(1)求证:AF∥平面CBD;
(2)求平面CBD与平面ABFE夹角的余弦值.