(本小题12分)某电视节目《幸运猜猜猜》有这样一个竞猜环节,一件价格为9816元的商品,选手只知道1,6,8,9四个数,却不知其顺序,若在竞猜中猜出正确价格中的两个或以上(但不含全对)正确位置,则正确位置会点亮红灯作为提示;若全对,则所有位置全亮白灯并选手赢得该商品,
(Ⅰ)求某选手在第一次竞猜时,亮红灯的概率;
(Ⅱ)若该选手只有二次机会,则他赢得这件商品的概率为多少?
已知函数在x=1处取得极值,在x=2处的切线平行于向量
(1)求a,b的值,并求的单调区间;
(2)是否存在正整数m,使得方程在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.
已知函数的最大值是2,
其图象经过点
.
(1)求的解析式;
(2)已知,且
,
求的值.
(本小题满分14分)
已知函数的图象经过点A(2,1)和B(5
,2),记
(1)求数列的通项公式;
(2)设,若3-
恒成立,求
的最小值
(本小题满分14分)
矩形的两条对角线相交于点M(2,0),
边所在直线的方程为
,点T(-1,1)在
边所在直线上.
(1)求边所在直线的方程;
(2)求矩形外接圆的方程;
(3)若动圆过点N(-2,0),且与矩形
的外接圆外切,求动圆
的圆心的轨迹方程.
18.(本小题满分13分)
如图,直二面角中,四边形
是边长为
2的正方形,为CE上的点,且
平面
.
(1)求证:平面
;
(2)求三棱锥E-ABC的体积.