如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的交AC于点E,F是
上的点,且
(1)求证:BC是的切线;
(2)若sinC=,AE=
,求sin∠AFE的值和AF的长.
如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE="2" cm,BD="3" cm,求线段BC的长.
如图,已知△ABC.
(1)用直尺和圆规作角平分线AD.
(2)用刻度尺作中线CE.
如图,在直角坐标系中,以点A(,0 )为圆心,以2
为半径的圆与x轴相交于点B、C,与y轴相交于点D、E
(1)若抛物线经过C、D两点,求抛物线的表达式,并判断点B是否在该抛物线上
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小
(3)设Q为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形,若存在,求出点M的坐标;若不存在,说明理由
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价元/吨与采购量
吨之间函数关系的图象如图中的折线段
所示(不包含端点
,但包含端点
).
(1)求与
之间的函数关系式;
(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润最大?最大利润是多少?