游客
题文

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于         ,此时       ;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图, O ΔABC 的外接圆, AB 为直径,点 P O 外一点,且 PA = PC = 2 AB ,连接 PO AC 于点 D ,延长 PO O 于点 F

(1)证明: AF ̂ = CF ̂

(2)若 tan ABC = 2 2 ,证明: PA O 的切线;

(3)在(2)条件下,连接 PB O 于点 E ,连接 DE ,若 BC = 2 ,求 DE 的长.

我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式 | x - 2 | 的几何意义是数轴上 x 所对应的点与2所对应的点之间的距离:因为 | x + 1 | = | x - ( - 1 ) | ,所以 | x + 1 | 的几何意义就是数轴上 x 所对应的点与 - 1 所对应的点之间的距离.

(1)发现问题:代数式 | x + 1 | + | x - 2 | 的最小值是多少?

(2)探究问题:如图,点 A B P 分别表示数 - 1 、2、 x AB = 3

| x + 1 | + | x - 2 | 的几何意义是线段 PA PB 的长度之和,

当点 P 在线段 AB 上时, PA + PB = 3 ,当点 P 在点 A 的左侧或点 B 的右侧时, PA + PB > 3

| x + 1 | + | x - 2 | 的最小值是3.

(3)解决问题:

| x - 4 | + | x + 2 | 的最小值是  

②利用上述思想方法解不等式: | x + 3 | + | x - 1 | > 4

③当 a 为何值时,代数式 | x + a | + | x - 3 | 的最小值是2.

甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.

(1)以 x (单位:元)表示商品原价, y (单位:元)表示实际购物金额,分别就两家商场的让利方式写出 y 关于 x 的函数解析式;

(2)新冠疫情期间如何选择这两家商场去购物更省钱?

某校为了响应市政府号召,在“创文创卫”活动周中,设置了“ A :文明礼仪, B :环境保护, C :卫生保洁, D :垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.

(1)本次调查的学生人数是  人, m =   

(2)请补全条形统计图;

(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是  ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是  

如图,在正方形 ABCD 中,点 E BC 边的延长线上,点 F CD 边的延长线上,且 CE = DF ,连接 AE BF 相交于点 M

求证: AE = BF

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号