某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:
运输工具 |
途中平均速度 (千米/时) |
运费 (元/千米) |
装卸费用 (元) |
火车 |
100 |
15 |
2000 |
汽车 |
80 |
20 |
900 |
(1)车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答。
(2)市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是A市水果批发部门的经理,要想将这种水果运往其他地区销售。你将选择哪种运输方式比较合算呢?
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.
(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 ;
(2)乙车休息的时间为 ;
(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;
(4)求行驶多长时间两车相距100km.
观察下列一组等式的化简.然后解答后面的 问题:;
;
…
(1)在计算结果中找出规律= (n表示大于0的自然数)
(2)通过上述化简过程,可知
(填“>”、“<”或“=”);
(3)利用你发现的规律计算下列式子的值:
在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.
(1)求这个梯子的顶端距地面有多高?
(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?
已知一次函数y=kx-3的图象与正比例函数y=的图象相交于点(-2,a).
(1)求出一次函数解析式.
(2)点A(x1,y1),B(x2,y2)都在一次函数图象上,若x1<x2,试比较y1与y2的大小.
如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.
(1)请画出△ABC关于y轴对称的△A1B1C1;并写出B1点的坐标:
(2)若将△ABC顶点纵坐标都乘以-1,横坐标不变,得到的△A2B2C2与△ABC有怎样的位置关系: .