阅读理解:对于任意正实数a、b,∵≥0,∴
≥0,
∴≥
,只有当a=b时,等号成立.
结论:在≥
(a、b均为正实数)中,若ab为定值p,则a+b≥
,只有当a=b时,a+b有最小值
.
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为,考虑何时时周长
最小。
∵m>0,(定值),由以上结论可得:
只有当m= 时,镜框周长有最小值是 ;
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.
某学校八年级三名学生数学的平时成绩、期中成绩和期末成绩如下表:
平时 |
期中 |
期末 |
|
学生甲 |
90 |
95 |
85 |
学生乙 |
90 |
85 |
95 |
学生丙 |
80 |
90 |
97 |
(1)分别计算三人的平均成绩,谁的平均成绩好?
(2)老师根据三个成绩的“重要程度”,将平时、期中、期末成绩依次按30%、30%、40%的比例分别计算3位同学的平均成绩,按这种方法计算,谁的平均成绩好?
如图,矩形ABCD中,AC与BD交于点O,BE⊥AC于E,CF⊥BD于F.
求证:BE=CF.
若一次函数y=-2x+b的图像经过点(2,2).(1)求b的值;(2)在图中画出此函数的图像;(3)观察图像,直接写出y<0时x的取值范围.
如图,已知△ABC的三个顶点在格点上.(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)求出△A1B1C1的面积.
(1)求下式中的x:9x2-4="0."
(2)计算: .
(3) 求不等式的解集: