某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组 |
频数 |
频率 |
(3.9,4.2] |
3 |
0.06 |
(4.2,4.5] |
6 |
0.12 |
(4.5,4.8] |
25 |
x |
(4.8,5.1] |
y |
z |
(5.1,5.4] |
2 |
0.04 |
合计 |
n |
1.00 |
(1)求频率分布表中未知量n,x,y,z的值;
(2)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
(本题8分)在中,角
所对的边
分别为
,已知
。
(1)求的值;
(2)当,
时,求
及
的长。
(本题9分)在平面直角坐标系中,点
、
、
。
(1)求以线段为邻边的平行四边形两条对角线的长;
(2)当为何值时,
与
垂直;
(3)当为何值时,
与
平行,平行时它们是同向还是反向。
(本题9分)甲袋中有3只白球、7只红球、15只黑球;乙袋中有10只白球、6只红球、9只黑球。
(1)从甲袋中任取一球,求取到白球的概率;
(2)从两袋中各取一球,求两球颜色相同的概率;
(3)从两袋中各取一球,求两球颜色不同的概率。
(本题9分)给出下面的数表序列:
表1 |
表2 |
表3![]() |
… |
1 |
1 3 |
1 3 5 |
|
4 |
4 8 |
||
12 |
其中表有
行,第1行的
个数
是1,3,5,…,
,从第2行起,每行中的每个数都等于它肩上的两数之和。
(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表(不要求证明)
(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为,求数列
的前
项和
(本小题满分14分)
将数列中的所有项按每一行比上一行多一项的规则排成如下数表
:
………………………
记表中的第一列数构成的数列为
,
.
为数列
的前
项和,且满足
.
(1)证明:;
(2)求数列的通项公式;
(3)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第
行所有项的和.