已知椭圆长轴上有一点到两个焦点之间的距离分别为:3+2
,3-2
(1)求椭圆的方程;
(2)如果直线x=t(teR)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线
BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0 )作直线l(与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,、若,求证:
为定值.
。
(1)若
(2)求
(3)求证:当时,
恒成立。
已知公差不为零的等差数列的前4项和为10,且
成等比数列.
(Ⅰ)求通项公式;
(Ⅱ)设,求数列
的前
项和
.
在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上。
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C被直线截得的弦长为
,求
的值。
某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
求分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
如图所示,已知M、N分别是AC、AD的中点,BC
CD.
(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求证:平面B CD平面ABC;
(Ⅲ)若AB=1,BC=,求直线AC与平面BCD所成的角.