.(本小题满分12分)
为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为,最后一组数据的频数是6.
(Ⅰ)估计该校高三学生质检数学成绩在125~140分之间的概率,并求出样本容量;
(Ⅱ)从样本中成绩在65~95分之间的学生中任选两人,求至少有一人成绩在65~80分之间的概率.
已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形,
(1)求椭圆的离心率;
(2)若焦点到同侧顶点的距离为,求椭圆的方程.
已知抛物线,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.
设是椭圆C:
的左、右焦点,过
的直线
与椭圆C相交于A、B两点,直线
的倾斜角为
,
到直线
的距离为
。
(1)求椭圆C的焦距。
(2)如果,求椭圆C的方程。
已知在
处有极值,其图象在
处的切线与直线
平行。(1)求函数的单调区间;
(2)若时,
恒成立,求实数
的取值范围。
已知某养猪场每年的固定成本是20000元,每年最大规模的养殖量是400头。每养一头猪,成本增加100元。如果收入函数是是猪的数量),每年养多少头猪可使总利润最大?总利润是多少?