(本小题满分13分)(注意:在试题卷上作答无效)
已知函数的反函数为
,定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”.
(1)判断函数是否满足“1和性质”,并说明理由;
(2)若,其中
满足“2和性质”,则是否存在实数a,使得
对任意的
恒成立?若存在,求出
的范围;若不存在,请说明理由.
如图,四棱锥中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面平面
;
(2)若二面角为
,求
与平面
所成角的正弦值。
如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
设函数(a、b、c、d∈R)图象C关于原点对称,且x=1时,
取极小值
(1)求f(x)的解析式;
(2)当时,求函数f(x)的最大值
已知
(1)求;
(2).
已知函数,若
在
=1处的切线方程为
。
(1) 求的解析式及单调区间;
(2) 若对任意的都有
≥
成立,求函数
=
的最值。