小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:
售出个数![]() |
10 |
11 |
12 |
13 |
14 |
15 |
天数 |
3 |
3 |
3 |
6 |
9 |
6 |
试依据以频率估计概率的统计思想,解答下列问题:
(Ⅰ)计算小王某天售出该现烤面包超过13个的概率;
(Ⅱ)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量. 试求小王增加订购量的概率.
(Ⅲ)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.
一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.
(1)从中同时摸出两个球,求两球颜色恰好相同的概率;
(2)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
已知,
,当
为何值时,
(1) 与
垂直?(2)
与
平行?平行时它们是同向还是反向?
已知圆和圆
.
(1)判断圆和圆
的位置关系;
(2)过圆的圆心
作圆
的切线
,求切线
的方程;
(3)过圆的圆心
作动直线
交圆
于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆
,使得圆
经过点
?若存在,求出圆
的方程;若不存在,请说明理由.
设数列的前
项和
,
为等比数列,且
.
(1)求数列的通项公式;(2)设
,求数列
前
项和
.
如图,在正方体中,
是
的中点.
(1)求证:平面
;
(2)求证:平面平面
;
(3)求直线BE与平面所成角的正弦值.