南宁市某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.
(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;
(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?
2014年西宁市教育局建立了“西宁招考信息网”,实现了“网上二填报三公开三查询”,标志着西宁中考迈出网络化管理第一步,在全市第二次模拟考试实战演练后,通过网上查询,某校数学教师对本班数学成绩(成绩取整数,满分为120分)作了统计分析,绘制成频数分布步和频数分布直方图,请你根据图表提供的信息,解答下列问题:
频数分布表:
分组 |
频数 |
频率 |
60<x≤72 |
2 |
0.04 |
72<≤84 |
8 |
0.16 |
84<x≤96 |
20 |
a |
96<x≤108 |
16 |
0.32 |
108<x≤120 |
b |
0.08 |
合计 |
50 |
1 |
(1)频数分布表中a= ,b= ;
(2)补全频数分布直方图;
(3)为了激励学生,教师准备从超过108分的学生中选2人介绍学习经验,那么取得118分的小红和112分的小明同时被选上的概率是多少?请用列表法或画树形图加以说明,并列出所有可能的结果.
课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(-2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.
(1)求反比例函数y=的解析式;
(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.
(1)解关于m的分式方程=-1;
(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.
某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.
(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。
(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.