如图,在平面直角坐标系O
中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=
.
(1)求点D的坐标,并直接写出t的取值范围;
(2)连接AQ并延长交轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(3)在(2)的条件下,t为何值时,四边形APQF是梯形?
某汽车租赁公司拥有20辆汽车。据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元。设公司每日租出x辆车时,日收益为y元。(日收益=日租金收入-平均每日各项支出)
(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);
(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?
(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E。
(1)求证:△ABD∽△CED;
(2)若AB=6,AD=2CD,求BE的长。
某学生参加社会实践活动,在景点P处测得景点B位于南偏东方向,然后沿北偏东
方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离。
有两个可以自由转动的质地均匀转盘都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,如图所示,转动转盘,两个转盘停止后观察并记录两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)。
(1)用列表法或画树形图法求出同时转动两个转盘一次的所有可能结果;
(2)同时转动两个转盘一次,求“记录的两个数字之和为7”的概率。
如图,在4×4的正方形方格中,△ABC的顶点都在边长为1的小正方形的顶点上。请你在图中画出一个与△ABC相似的△DEF,使得△DEF的顶点都在边长为1的小正方形的顶点上,且△ABC与△DEF的相似比为1∶2。