(本小题满分12分)
如图所示,正方形与直角梯形
所在平面互相垂直,
,
,
.
(1)求证:平面
;
(2)求四面体的体积.
(12分) 已知椭圆C:,其相应于焦点
的准线方程为
。
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知过点
倾斜角为
的直线分别交椭圆C于A、B两点,求证:
;
(Ⅲ)过点
作两条互相垂直的直线分别交椭圆C于A、B和D、E,求
的最小值。
(12分) 已知函数-4
(a∈N﹡).(Ⅰ)若函数
在(1,+∞)上是增函数,求a的值;(Ⅱ)在(Ⅰ)的条件下,若关于x的方程
在区间[1,e]上恰有一个实根,求实数b的取值范围.
(13分) 如图1, 在直角梯形中,
,把△
沿对角线
折起后
如图2所示(点记为点
), 点
在平面
上的正投影落在线段
上,连接
.
(Ⅰ)求直线与平面
所成的角的大小;
(Ⅱ)求二面角的大小的余弦值.
图1图2
(13分) 某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为,乌克兰队赢的概率为
,且每局比赛输赢互不影响.若中国队第n局的得分记为
,令
.(1)求
的概率;(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量
表示此次比赛共进行的局数,求
的分布列及数学期望.
(13分) 如图,在四边形ABCD中,AB=3,AD=BC=CD=2,A=60°。
(1)求的值;(2)求
的面积。