(本小题满分12分)
如图一所示,边长为1的正方体中,
分别为
的中点。
(Ⅰ)证明:;
(Ⅱ)若为
的中点,证明:
;
(Ⅲ)如图二所示为一几何体的展开图,沿着图中虚线将它们折叠起来,所得几何体的体积为,若正方体
的体积为
,求
的值。
已知在递增等差数列中,
,
成等比数列数列
的前n项和为Sn,且
.
(1)求数列、
的通项公式;(2)设
,求数列
的前
和
.
在中,角
,
,
的对边分别为
,且
,
,
成等差数列.
(1)若,求
的值;(2)求sinA+sinC的最大值.
已知函数
(1)当时,求
的极值
(2)当时,求
的单调区间
(3)若对任意的,恒有
成立,求实数
的取值范围。
已知向量a=(,
),b=(2,cos2x).
(1)若x∈(0,],试判断a与b能否平行?
(2)若x∈(0,],求函数f(x)=a·b的最小值.
在等差数列和等比数列
中,a1=2b1=2,b6=32,
的前20项
和S20=230.
(Ⅰ)求和
;
(Ⅱ)现分别从和
的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.