在如图所示的2005年1月份日历中,
星期日 |
星期一 |
星期二 |
星期三 |
星期四 |
星期五 |
星期六 |
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
|
|
|
|
(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为 ;
(2)这个长方形的方框圈出的9个数的和能为216吗?答 :(填“能”或“不能”);
(3)如果任意选择如上的阴影部分,那么其中的四个数、
、
、
又有什么规律呢?请用含的
、
、
、
等式表示: 。
(其中、
、
、
四个数之间的大小关系是
,
、
、
、
整数)
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.求证:.
如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1︰2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
在网格图中,画出相应的图形.
(1)将图形沿x轴负方向平移3个单位,得到△A1B1C1;
(2)关于x轴对称,得到△A2B2C2;
(3)以点C2为位似中心,各边扩大到原来的2倍,得到△A3B3C3.
(陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).
①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;
②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.
根据以上测量过程及测量数据,请你求出河宽BD是多少米.
(浙江绍兴)课本中有一道作业题:
小颖解得此题的答案为48mm.小颖善于反思,她又提出了如下的问题.
(1)如果原题中所要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成的,如图,此时,这个矩形零件的两条边长又分别为多少mm?请你计算;
(2)如果原题中所要加工的零件只是一个矩形,如图,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.