在中,
cm ,
cm ,动点
以1cm/s 的速度从点
出发到点
止,动点
以2cm/s 的速度从点
出发到点
止,且两点同时运动,当以点
、
、
为顶点的三角形与
相似时,求运动的时间.
已知椭圆的焦点分别为
、
,长轴长为6,设直线
交椭圆
于A、B两点。(Ⅰ)求线段AB的中点坐标;(Ⅱ)求
的面积。
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,
求:(Ⅰ)动点M的轨迹方程;
(Ⅱ)若N为线段AM的中点,试求点N的轨迹.
设集合A=,关于x的不等式
的解集为B(其中a<0),设
,
,且
是
的必要不充分条件,求实数a的取值范围.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点
处的切线的斜率为
,问:
在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
(Ⅲ)当时,设函数
,若在区间
上至少存在一个
,使得
成立,试求实数
的取值范围.
已知函数,
(Ⅰ)当时,求该函数的定义域和值域;
(Ⅱ)如果在区间
上恒成立,求实数
的取值范围.