(本小题满分14分)已知数列中,,, 为该数列的前项和,且.(1)求数列的通项公式;(2)若不等式对一切正整数都成立,求正整数的最大值,并证明结论.
已知函数 (1)求的定义域并判断它的奇偶性; (2)求的值域.
已知函数. (1)求函数在上的单调递增区间; (2)当时,恒成立,求实数的取值范围.
已知,,. (1)求的值; (2)求的值.
已知函数,. (1)若,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由; (2)设函数,若至少存在一个,使得成立,求实数a的取值范围; (3)求函数的单调区间.
已知椭圆:()的上顶点为,过的焦点且垂直长轴的弦长为.若有一个菱形的顶点、在椭圆上,该菱形对角线所在直线的斜率为. (1)求椭圆的方程; (2)当直线过点时,求直线的方程; (3)当时,求菱形面积的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号