游客
题文

请尝试解决以下问题:
(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,

由旋转可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)运用(1)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.

(3)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD+CE=DE始终成立,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

列式并计算:
(1)﹣1减去的差乘以﹣7的倒数的积;
(2)﹣2、5、﹣9这三个数的和的绝对值比这三个数的绝对值的和小多少?

将0,这四个数在数轴上表示出来.并用“<”号连接起来.

已知,如图,抛物线>0)与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

小明在课外学习时遇到这样一个问题:
定义:如果二次函数满足,则称这两个函数互为“旋转函数”.
求函数的“旋转函数”.
小明是这样思考的:由函数可知,,根据,求出,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)直接写出函数的“旋转函数”;
(2)若函数互为“旋转函数”,求的值;
(3)已知函数的图象与轴交于点A、B两点(A在B的左边),与轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”。

操作:如图①,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角:

(1)角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.
(2)若角的两边分别交AB、CA的延长线于M、N两点,连接MN。在图②中画出图形,再直接写出线段BM、MN、NC之间的关系.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号