(本小题满分13分)对某校高一年级的学生参加社区服务的次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了下图所示的频数与频率的统计表和频率分布直方图:
(I)求出表中M、p及图中a的值
(II)学校决定对参加社区服务的学生进行表彰,对参加活动次数在[25,30]区间的每个学生发放价值80元的学习用品,对参加活动次数在[20,25)区间的每个学生发放价值60元的学习用品,对参加活动次数在[15,20)区间的每个学生发放价值40元的学习用品,对参加活动次数在[10,15)区间的每个学生发放价值20元的学习用品,在所抽取的这M名学生中,任意取出2人,设X为此二人所获得学习用品价值之差的绝对值,求X的分布列与数学期望E(X)。
已知函数在其定义域上满足:
,
①函数的图象是否是中学对称图形?若是,请指出其对称中心(不证明)
②当时,求
的取值范围
③若,数列
满足
,那么若
正整数N满足n>N时,对所有适合上述条件的数列
,
恒成立,求最小的N。
1)在平面直角坐标系中,已知某点,直线
.求证:点P到直线
的距离
2)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线
与抛物线C相交于A,B两点,若向量
在向量
上的投影为n,且
,求直线
的方程。
已知数列是公差为1的等差数列,
是公比为2的等比数列,
分别是数列
和
前n项和,且
①分别求,
的通项公式。
②若,求n的范围
③令,求数列
的前n项和
。
六名学生需依次进行身体体能和外语两个项目的训练及考核。每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是
,假设每一次考试是否合格互不影响。
①求某个学生不被淘汰的概率。
②求6名学生至多有两名被淘汰的概率
③假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量
的概率。
在正三棱柱中,底面三角形ABC
的边长为,侧棱的长为
,D为棱
的中点。
①求证:∥平面
②求二面角的大小
③求点到平面
的距离。