近日,我市多个县区遭遇龙卷风,冰雹等自然灾害,某校八年级两个班各给灾区捐款1800元,已知(2)班比(1)班人均捐款多4元,(2)班的人数比(1)班的人数少10%,请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程。
(1)计算:
(2)A、B两人共解方程组,由于A看错了方程(1)中的a,得到的解是
,而B看错了方程(2)中的b, 得到的解是
,试求
的值.
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
如图,点
在
轴的正半轴上,
,
,
.点
从点
出发,沿
轴向左以每秒1个单位长的速度运动,运动时间为
秒.
(1)求点的坐标;
(2)当时,求
的值;
(3)以点为圆心,
为半径的
随点
的运动而变化,当
与四边形
的边(或边所在的直线)相切时,求
的值.
随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.
⑴如果制伞厂确保在第10天完成生产任务,平均每天应生产雨伞把;
⑵生产2天后,制伞厂又从其它部门抽调了10名工人参加雨伞生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该厂原计划安排多少名工人生产雨伞?
⑶已知每位工人每天平均工资为60元,每把雨伞的材料费用为8.2元.如果制伞厂按照⑵中的生产方式履行合同,将获得毛利润多少元?(毛利润=雨伞的销售价-雨伞的材料费-工人工资)
校车安全是近几年社会关注的重大问题,安全隐患主要是超载和超速.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与
垂直,测得CD的长等于21米,在
上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°
(1)求AB的长(精确到0.1米,参考数据:,
);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.