已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.(I)求椭圆方程;(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)请用“五点法”作出函数在区间上的简图.
已知是定义在上的偶函数,且时,. (Ⅰ)求,; (Ⅱ)求函数的表达式; (Ⅲ)若,求的取值范围.
已知椭圆与直线相交于两点. (1)若椭圆的半焦距,直线与围成的矩形的面积为8, 求椭圆的方程; (2)若(为坐标原点),求证:; (3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.
数列满足. (1)计算,,,,由此猜想通项公式,并用数学归纳法证明此猜想; (2)若数列满足,求证:.
如图,在圆锥中,已知,⊙O的直径,是的中点,为的中点. (1)证明:平面平面; (2)求二面角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号