为适应新课改,切实减轻学生负担,提高学生综合素质,某市某学校高三年级文科生300人在数学选修4-4、4-5、4-7选课方面进行改革,由学生自由选择2门(不可多选或少选),选课情况如下表:
|
4-4 |
4-5 |
4-7 |
男生 |
130 |
![]() |
80 |
女生 |
![]() |
100 |
60 |
(1)为了解学生情况,现采用分层抽样方法抽取了三科作业共50本,统计发现4-5有18本,试根据这一数据求出,
的值.
(2)为方便开课,学校要求≥110,
>110,计算
>
的概率.
(本题12分)求过直线和
的交点,且垂直于直线
的直线方程。
(本题12分)已知函数
(1)判断的奇偶性;
(2)判断并用定义证明在
上的单调性。
(本小题满分分)
已知函数.(
为常数,
)
(Ⅰ)若是函数
的一个极值点,求
的值;
(Ⅱ)求证:当时,
在
上是增函数;
(Ⅲ)若对任意的,总存在
,使不等式
成立,求实数
的取值范围.
(本小题满分分)
已知数列满足
(Ⅰ)李四同学欲求的通项公式,他想,如能找到一个函数
,把递推关系变成
后,就容易求出
的通项了.请问:他设想的
存在吗?
的通项公式是什么?
(Ⅱ)记,若不等式
对任意
都成立,求实数
的取值范围
(本小题满分分)
已知双曲线的左、右顶点分别为
,动直线
与圆
相切,且与双曲线左、右两支的交点分别为
.
(Ⅰ)求的取值范围,并求
的最小值;
(Ⅱ)记直线的斜率为
,直线
的斜率为
,那么,
是定值吗?并证明