如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式成立.
(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式 ;
(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.
如图,在平面直角坐标系中,△ABC的三个顶点
坐标分别是A(2,3)、B(2,1)、C(3,2).
①判断△ABC的形状;②如果将△ABC沿着边AC旋转,求所得旋转体的全面积如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的格点上.
①在图甲中作出的四边形是中心对称图形但不是轴对称图形;
②在图乙中作出的四边形是轴对称图形但不是中心对称图形;
③在图丙中作出的四边形既是轴对称图形又是中心对称图形.
如图,已知:抛物线,
关于
轴对称;抛物线
,
关于
轴对称。
如果抛物线的解析式是
,那么抛物线
的解析式
是.
如图,在直角坐标系中,点在
轴上,⊙
与
轴交于点
,
.直线
与坐标轴交于C 、D两点,直线在⊙
的左侧.
求
的面积;
当直线向右平移,第一次与⊙
相切时,求直线的解析式.
如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.求证:直线CD为⊙O的切线;
当AB=2BE,且CE=时,求AD的长.
如图,△OAB的底边与⊙O相切,切点为C,且OA=OB,⊙O与OA、OB分别交于D、E两点,D、E分别为OA、OB的中点。求
的度数;
若阴影部分的面积为
,求⊙O的半径r