借助“世博会”的东风,某小商品公司开发一种纪念品,每件产品的成本是15元,销售价是20元,月平均销售件,通过改进工艺,产品的成本不变,质量得到提高,市场分析的结果表明:如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
,记改进工艺后,该公司销售纪念品的月平均利润是
元.
(1)写出与
的函数关系式;
(2)改进工艺后,试确定该纪念品的销售价,使得公司销售该纪念品的月平均利润最大.
某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列,并求李明在一年内领到驾照的概率.
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:若由资料知,y对x呈线性相关关系,试求:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?.
有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)共有多少种放法?
(2)恰有一个盒子不放球,有多少种放法?
(3)恰有一个盒内放2个球,有多少种放法?
(4)恰有两个盒不放球,有多少种放法?
如图的三个顶点都在⊙O上,
的平分线与BC边和⊙O分别交于点D、E.
(1)指出图中相似的三角形,并说明理由;
(2)若,求
的长.
已知,且(1-2x)n=a0+a1x+a2x2+a3x3+……+anxn.
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+……+an的值。