计算:
(满分l4分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长度的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长度的速度向点B匀速运动.伴随着P,Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB—BC—CP于点E.点P,Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P,Q运动的时间是t s(t>O).
(1)当t=2时,AP=________,点Q到AC的距离是_________;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,也请说明理由.
(满分l2分)如图,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,点E是AD的中点,求证:CE⊥BE.
(满分l2分)如图,A,B两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越保护区?为什么?(参考数据:≈1.732,
≈1.414)
(满分l2分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=,BC=1,求⊙O的半径.
(满分l0分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图(图).
组别 |
锻炼时间(时/周) |
频数 |
A |
1.54≤t<3 |
1 |
B |
3≤t<4.5 |
2 |
C |
4.5≤t<6 |
m |
D |
6≤t<7.5 |
20 |
E |
7.5≤t<9 |
15 |
F |
t≥9 |
n |
根据上述信息解答下列问题:
(1)m=_______,n=________;
(2)在扇形统计图中,D组所占圆心角的度数为_________;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6h的学生约有多少名?_________。