如图,△ABC是⊙O的内接三角形,点C是优弧AB上一个动点(不与A、B重合)。设∠OAB=α,∠C=β
(1)当α=35°时,求β的度数;
(2)猜想α与β之间的关系,并给予证明。
如图,在直角坐标系中,二次函数经过 , , 三个点.
( 1 )求该二次函数的解析式.
( 2 )若在该函数图象的对称轴上有个动点 ,求当 点坐标为何值时, 的周长最小.
如图,一次函数 图象与反比例函数 的图象交于点 、 ,与 轴交于点 .
( 1 )求一次函数 与反比例函数 的解析式.
( 2 )求点 坐标.
( 3 )平面上的点 与点 、 、 构成平行四边形,请直接写出满足条件的 点坐标 ______ .
某中学开展 " 阳光体育一小时 " 活动,按学校实际情况,决定开设 A :踢毽子; B :篮球; C :跳绳; D :乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:
(1)本次共调查了 ________ 名学生;
(2)在扇形统计图中, " B " 所在扇形的圆心角是 ________ 度;
(3)将条形统计图补充完整;
(4)若该中学有 1200 名学生,喜欢篮球运动的学生约有 ________ 名.
如图,桌面上竖直放置着一个等腰直角三角板 ,若测得斜边 的两端点到桌面的距离分别为 , .
( 1 )求证: ;
( 2 )若 , ,求 的长.
如图,在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 ,且 ,点 是第三象限内抛物线上的一动点.
( 1 )求此抛物线的表达式;
( 2 )若 ,求点 的坐标;
( 3 )连接 ,求 面积的最大值及此时点 的坐标.