本题14分)已知函数在
上为增函数,且
(1)求θ的值;
(2)若在[1,+
)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个x0,使得
成立,求m的取值范围.
已知数列的前
项和为
,且满足
,
.
(1)求数列的通项公式;
(2)是否存在整数对,使得等式
成立?若存在,请求出所有满足条件的
;若不存在,请说明理由.
如图,平面
,矩形
的边长
,
,
为
的中点.
(1)证明:;
(2)如果异面直线与
所成的角的大小为
,求
的长及点
到平面
的距离.
某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.
(1)计算甲班7位学生成绩的方差;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班、乙班各一人的概率.
选修4—4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(
为参数),又以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线的直角坐标方程;
(2)设直线与曲线
方程相交于
,
两点,求
.
设函数,
.
(1)若曲线在点
处的切线与直线
垂直,求
的值;
(2)求函数的单调区间;
(3)若函数有两个极值点
,
,且
,求证:
.