已知某校5个学生的数学和物理成绩如下表
(1)假设在对这名学生成绩进行统计时,把这
名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有
名学生的物理成绩是自己的实际分数的概率是多少?
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用表示数学成绩,用
表示物理成绩,求
与
的回归方程;
(3)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
参考数据和公式:,其中
,
;
,残差和公式为:
己知函数.
(I)求的极大值和极小值;
(II)当时,
恒成立,求
的取值范围.
设抛物线的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线与圆
的方程;
(II)过且斜率为
的直线
与
交于
两点,求
的面积.
如图,在直三棱柱中,
分别为
、
的中点,
为
上的点,且
(I)证明:∥平面
;
(Ⅱ)若,
,求三棱锥
的体积.
在数学趣味知识培训活动中,甲、乙两名学生的6次培训成绩如下茎叶图所示:
(Ⅰ)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(II)从乙的6次培训成绩中随机选择2个,试求选到123分的概率.
已知中,内角
所对边长分别为
,
.
(I)求;
(II)若,求
的面积.