.(本小题14分)椭圆的一个顶点为
,离心率
(1)求椭圆方程;
(2)若直线与椭圆交于不同的两点
,且满足
,
,求直线
的方程.
(本小题满分12分)
(理)已知甲,乙两名射击运动员各自独立地射击1次,命中10环的概率分别为,x(x>
);且乙运动员在2次独立射击中恰有1次命中10环的概率为
(I)求x的值
(II)若甲,乙两名运动员各自独立地射击1次,设两人命中10环的次数之和为随机变量ξ,求ξ的分布列及数学期望
(本小题满分12分)在△ABC中,·
=1,
·
=-3
(I)求△ABC的边AB的长
(II)求的值
已知函数.
(Ⅰ)当时,求函数
在
,
上的最大值、最小值;
(Ⅱ)令,若
在
上单调递增,求实数
的取值范围.
如图,在直三棱柱中,
,
,
分别为
,
的中点,四边形
是边长为
的正方形.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的余弦值.
已知等差数列满足:
,
,
的前n项和为
.
(Ⅰ)求及
;
(Ⅱ)令bn=(
),求数列
的前n项和
.