游客
题文

工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中的一个排列,求所需派出人员数目的分布列和均值(数字期望)
(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3a3S5a5S4a4成等差数列.
(1)求数列{an}的通项公式;
(2)设TnSn(n∈N*),求数列{Tn}的最大项的值与最小项的值.

已知函数f(x)=(x-1)2g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并证明数列{bn-1}是等比数列;
(2)若数列{cn}满足cn,证明:c1c2c3+…+cn<3.

正项数列{an}的前n项和Sn满足:-(n2n-1)Sn-(n2n)=0.
(1)求数列{an}的通项公式an
(2)令bn,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.

已知数列{an}是首项为,公比为的等比数列,设bn+15log3ant,常数t∈N*.
(1)求证:{bn}为等差数列;
(2)设数列{cn}满足cnanbn,是否存在正整数k,使ckck+1ck+2按某种次序排列后成等比数列?若存在,求kt的值;若不存在,请说明理由.

在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求dan
(2)若d<0,求|a1|+|a2|+…+|an|.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号